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Abstract

Numerical models of ocean circulation often depend on parameters that must be

tuned to match either results from laboratory experiments or field observations. This

study demonstrates that an initial, suboptimal estimate of a parameter in a model

of a small bay can be improved by assimilating observations of trajectories of passive

drifters. The parameter of interest is the Manning’s n coefficient of friction in a small

inlet of the bay, which had been tuned to match velocity observations from 2011.

In 2013, the geometry of the inlet had changed, and the friction parameter was no

longer optimal. Results from synthetic experiments demonstrate that assimilation

of drifter trajectories improves the estimate of n, both when the drifters are located

in the same region as the parameter of interest and when the drifters are located in

a different region of the bay. Real drifter trajectories from field experiments in 2013

also are assimilated, and results are compared with velocity observations. When the

real drifters are located away from the region of interest, the results depend on the
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time interval (with respect to the full available trajectories) over which assimilation

is performed. When the drifters are in the same region as the parameter of interest,

the value of n estimated with assimilation yields improved estimates of velocity

throughout the bay.
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1. Introduction1

Bottom stress is important to circulation in shallow water, and its inclusion in2

numerical models can have significant impacts on the simulation results. However, it3

is difficult to measure spatially-varying bottom stress directly in the field (Trowbridge4

et al., 1999; Sanford and Lien, 1999; Biron et al., 2004), and thus often stress is5

approximated with a bottom drag coefficient derived from laboratory experiments6

or by tuning numerical model simulations to observations, which usually involves7

iterations of model results that are time-consuming and costly (Cheng et al., 1999;8

Chen et al., 2015; Orescanin et al., 2016). Drag coefficients also can be estimated9

from observations of the flow by assuming a balance between pressure gradients and10

bottom stress (Feddersen et al., 2000; Seim et al., 2002; Apotsos et al., 2008; Kim11

et al., 2000; Orescanin et al., 2014). These coefficients have been estimated in other12

regions by assimilating sea-level data into numerical simulations (Mayo et al., 2014).13

Here, the Manning’s n drag coefficient in a multiple tidal inlet system on Martha’s14

Vineyard, MA is estimated by assimilating observed Lagrangian drifter trajectories15

into a numerical model for sea level and circulation.16

Martha’s Vineyard is separated from Chappaquiddick Island by Katama Bay,17

which is connected to Vineyard Sound via Edgartown Channel and to the Atlantic18

Ocean via the ephemeral Katama Inlet (Figure 1A). Norton Point, the sand spit19

between the bay and the Atlantic, was breached by a storm in 2007 (yellow arrow,20
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Figure 1: A) Satellite image (Google Earth, 2012) of Katama Bay, Katama Inlet, and Edgartown

Channel, with an inset showing the location of Katama Bay (red circle on Martha’s Vineyard)

relative to Boston and Cape Cod, B) Katama Inlet in 2011 showing the location of the initial

breach of Norton Point (yellow arrow), and C) Katama Inlet in 2013 during drifter deployments.

Figure 1B), forming Katama Inlet. Over the following years, the inlet became nar-21

rower, longer, and shallower as it migrated eastward (Figure 1B, C), and friction22

became more important to sea level and circulation in the bay (Orescanin et al.,23

2016).24

Data assimilation provides a framework for combining uncertain estimates from25

numerical models with noisy observations to estimate a variable that changes in time26

(Kalnay, 2003). For geophysical fluid flows, velocity fields and bathymetry can be27

estimated by assimilating Eulerian observations from in-situ sensors (Madsen and28

Cañizares, 1999; Oke et al., 2002; Kurapov et al., 2005; Wilson et al., 2010) or La-29

grangian observations from drifting sensors (Ide et al., 2002; Mariano et al., 2002;30

Molcard et al., 2005, 2006; Salman et al., 2006; Apte et al., 2008). Drifters follow31

(approximately) the motion of fluid parcels, and assimilation of their trajectories32

leads to improved estimates of large-scale circulation patterns (Taillandier et al.,33
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2006; Jacobs et al., 2014) and flows in vortices (Vernieres et al., 2011). Lagrangian34

observations also have been assimilated in models that estimate the topography in35

a laboratory channel (Honnorat et al., 2010) and the bathymetry in a river (Landon36

et al., 2014). Synthetic experiments have compared the Eulerian flow fields estimated37

by assimilating velocities derived from Lagrangian data (so-called pseudo-Lagrangian38

data assimilation) and by assimilating Lagrangian trajectories directly, and the re-39

sults show that the direct assimilation of trajectories outperforms pseudo-Lagrangian40

data assimilation (Molcard et al., 2003).41

In 2011, when Katama Inlet was open (Figure 1B), current meters were deployed42

throughout the bay (Orescanin et al., 2014, 2016). A numerical model (ADCIRC,43

Luettich and Westerink (1991)) of the circulation in the bay at this time was de-44

veloped, using boundary conditions from pressure gauges deployed in 2011, and the45

Manning’s n coefficient in the region of Katama Inlet was tuned to match the data46

from the current meters in 2011. In 2013, after the inlet had begun to migrate and47

narrow (Figure 1C), current meters were again deployed throughout the bay. Results48

from the numerical model using boundary conditions from the gauges deployed in49

2013, but with the same estimates of Manning’s n from 2011, were compared with50

the 2013 observations from the current meters. Orescanin et al. (2016) found that51

discrepancies between the 2013 observations and the numerical model were due to52

changes in friction, and therefore, the value of Manning’s n in Katama Inlet estimated53

from 2011 data was suboptimal when modeling the 2013 system.54

Here, drifter tracks observed in the Katama Bay system are assimilated into a55

numerical circulation model (ADCIRC) to estimate the bottom friction. The model56

uses bathymetry measured throughout the system and is driven with observed tides,57

and simulations with and without assimilating drifter data are compared with Eu-58

lerian observations of currents in Katama Bay. As a proof of concept, synthetic59
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observation experiments are performed first. Experiments assimilating real drifter60

data are performed next. Results from assimilating synthetic and real drifter trajec-61

tories in two distinct regions of Katama Bay are compared.62

2. Numerical model and observations63

2.1. Numerical model of Katama Bay64

Sea level and depth-averaged currents in Katama Bay are simulated with the65

two-dimensional version of the Advanced Circulation Model (ADCIRC, Luettich66

and Westerink (1991)), which solves a version of the shallow water equations via67

a finite-element method. This model assumes no stratification in the domain; this68

was supported by observations in Katama Bay. Casts from CTD (conductivity, tem-69

perature, depth) instruments throughout the system show little to no temperature70

or salinity stratification. Within the bay, the depths are very shallow, so this is71

expected. Offshore in Vineyard Sound and the Atlantic, in depths less than 10m,72

the same lack of vertical structure was observed. Winds were light (< 2 m/s) and73

waves were small (< 1 m) during the drifter deployment periods, and are not in-74

cluded here. The numerical grid consists of a finite-element triangular mesh with75

spacing ranging from 10 m in the inlets and 15 m in the bay to 200 m outside the76

inlets in both the Atlantic Ocean and Vineyard Sound (Figure 2A). Bathymetry (577

to 20 m horizontal and 0.05 m vertical resolution) in the bay, the inlets, and the ebb78

tidal delta (Figure 2A) was measured in 2013 with GPS and an acoustic altimeter79

mounted on a personal water craft, and interpolated onto the model grid (Orescanin80

et al., 2016). Pressure gauges and current meters were co-located at ten locations81

within Edgartown Channel, Katama Bay, and Katama Inlet (orange circles in Fig-82

ure 3) (Orescanin et al., 2016). The northern boundary of the model is forced with83
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the sea-level observations in Edgartown Harbor (yellow circle in Figure 2A), and the84

southern boundary is forced with observations from the Martha’s Vineyard Coastal85

Observatory (12 m depth, 4 km west of Katama Inlet; not shown).86

To estimate quadratic bottom stress, the model converts bottom roughness given87

by a user-defined value of Manning’s n (units s/m1/3) at each node to an equivalent88

quadratic drag coefficient given by:89

Cd(t) =
gn2

(D + η(t))1/3
, (1)

where g is gravity, t is time, D is the local mean depth, and η(t) is the water90

surface elevation above D (Luettich and Westerink, 1991).91

The Katama Bay domain is divided into several subregions based on bathymetry,92

each with a different value of Manning’s n (see Figure 2B.) In the original 201193

simulations, the deep boundary regions (dark blue in Figure 2B) outside of the bay94

were assigned the value n = 0.020 s/m1/3, which is standard for open water. The95

bay (light blue) was assigned n = 0.030 s/m1/3, which was calculated by convert-96

ing the bottom stress estimated from a pressure gradient balance (Orescanin et al.,97

2014) into n using an average depth of the bay. However, model-data comparisons98

(Orescanin et al., 2016) suggested that the friction coefficient needed to be increased99

to n = 0.035 s/m1/3 in an area surrounding Katama Inlet (green area in Figure 2B)100

in 2011. This spatial and temporal variation in n is due mainly to changes in bed-101

forms; for example, sand waves and dunes were observed throughout the system, and102

tended to migrate over time. These values of Manning’s n are typical in tidal inlets,103

including multiple tidal inlet systems (Mehta and Joshi, 1998; Kraus and Militello,104

1999; Friedrichs and Madsen, 1992; Friedrichs, 1995; Dias et al., 2009).105

By iteratively simulating the 2011 circulation, Manning’s n was estimated as the106
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value that minimized the difference between observed and simulated kinetic energy107

in the bay circulation (Orescanin et al., 2016). The tuning required several differ-108

ent model simulations, as well as a method for determining which value is optimal,109

because varying n can improve kinetic energy estimates in the inlet while degrading110

estimates elsewhere in the bay. For the estimation of the 2011 circulation, the root111

mean squared errors between the simulated and observed velocity kinetic energies,112

tidal currents, and sea-level amplitudes and phases were minimized. In particular,113

n was tuned until the errors at each of the seven observation locations were less114

than 15%, while minimizing the total error throughout the domain (Orescanin et115

al., 2016, especially Table 1). The Katama Inlet bathymetry changed substantially116

between 2011 and 2013 (compare Figure 1C with 1B), and simulations using the117

2013 bathymetry and the 2011-estimated n had decreased skill within Katama In-118

let (Orescanin et al., 2016). Note also that the flow has the greatest velocities in119

the inlet, and therefore changes in n here have large effects throughout the system120

(Orescanin et al., 2016). Here, Lagrangian drifter data from 2013 field experiments121

are assimilated into the model to improve the estimates of friction in Katama Inlet122

in 2013.123

2.2. Drifter observations in 2013124

In August 2013, several drifter deployments were conducted with twelve drifters125

released in multiple deployments over several days. On Aug 20, the drifters targeted126

Edgartown Channel, and on Aug 22, they targeted Katama Inlet (Figure 3). The127

surface tracking drifters used herein are a modified version of drifters deployed in the128

surf zone (MacMahan et al., 2009; Fiorentino et al., 2012) and rivers (Landon et al.,129

2014), both in body shape and type of handheld GPS. These drifters were deployed130

together in the inner shelf and visually behaved similarly. The GPS used on the 2013131
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Figure 2: A) Google Earth image of the Katama system with seafloor and land elevation contours

(colors, scale on right), the grid mesh, and the Edgartown Harbor pressure gauge (yellow circle) and

B) the bathymetrically-defined subregions with different friction factors (n; values for the colors are

given in the legend, units s/m
1/3

).
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Figure 3: Trajectories of real drifters deployed Aug 20, 2013 for approximately 140 minutes (Channel

Trajectories) and Aug 22, 2013 for approximately 110 minutes (Inlet Trajectories) in Katama Bay.

Orange circles are locations of acoustic Doppler current meters (water depths < 2 m) and profilers

(depths > 2 m).

Katama drifters is a Locosys GT-31, which provides accurate relative position useful132

for velocity measurements. The Locosys GPS has successfully measured surfzone133

velocities and trajectories (McCarroll et al., 2014) and surface gravity wave elevations134

(Herbers et al., 2012). The inlet drifters were also deployed as part of an experiment135

in the inner shelf of the Gulf of Mexico. The drifter trajectories compared well136

to acoustic Doppler current profiler (ADCP) surface velocity estimated trajectories137

(Roth et al., submitted).138
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3. Overview of Lagrangian data assimilation139

Lagrangian data can be assimilated directly or indirectly. In pseudo-Lagrangian140

data assimilation (Molcard et al., 2003), sequential positions of the drifters are con-141

verted to Lagrangian velocities, which are then assimilated into the model. Fully142

Lagrangian data assimilation uses the positions of the drifters directly, such as in the143

augmented vector approach (Kuznetsov et al., 2003), in which the positions of the144

drifters are appended to the state vector at each time step. With this approach, to145

assimilate observations of a single drifter following the flow into a two-dimensional146

velocity field, the augmented vector at time t is [u, v, x, y](t), where u and v are a147

representation of the velocity field at each model grid point at time t, and (x, y) is148

the position of the drifter at that time.149

Here, the focus is on estimating n as a parameterization of the flow field, so150

the state vector is [n, x1, y1, ...xND
, yND

] for ND drifters. The velocity [u, v] is not151

estimated directly from the assimilation, and thus does not appear in the state152

vector, although the evolution of the drifter positions depends on the time-variable153

velocity field, which depends on n.154

3.1. Ensemble Kalman Filter155

The data assimilation method used here is the ensemble Kalman filter (EnKF)156

(Evensen, 1994), which is used both operationally (Wei et al., 2006) and in test prob-157

lems, including Lagrangian data assimilation (Salman et al., 2006, 2008). The EnKF158

assimilates consecutive observations serially. At each time step, the best estimate159

and a quantification of its uncertainty are provided by an ensemble of possible re-160

alizations. When an observation is available, the ensemble is updated to reflect the161

new information. Here, the EnKF is reviewed briefly in the context of Lagrangian162

data assimilation for parameter estimation.163
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Let the state vector be given by z(t) = [n, x1(t), y1(t), ...xND
(t), yND

(t)]. At times164

t1, t2, ...tf drifters are observed at positions qobs, so that165

qobs(tk) = Hz(tk) + εk (2)166

where H = [0 I] is the observation operator in the augmented vector setup, and167

εk ∼ N (0,R) where R is the observational error covariance. The observation errors168

are assumed to be uncorrelated in time, independent, and Gaussian so that R = σ2
RI169

is diagonal.170

Assume that at time tk−1, there is an ensemble {zi(tk−1)} for i = 1...Ne, and171

the next available observation is at time tk. The forecast ensemble is computed by172

evolving each ensemble member forward under the dynamics. Although the parame-173

ter being estimated could evolve under a dynamic model as well, here the parameter174

remains the same between observation times, but the flow determined by that pa-175

rameter evolves according to the numerical model (in this case, ADCIRC.) Each176

ensemble member’s drifters simultaneously are advected passively under that veloc-177

ity field, giving the forecast ensemble at time tk, {zfi (tk)}, which will be updated to178

reflect the observation. The EnKF update step, also known as the analysis step, is179

applied to each ensemble member according to:180

zai = zfi + PfHT
(
HPfHT + R

)−1
(
Hzfi − [qobs + ηi]

)
(3)

Pf =
1

Ne − 1

Ne∑
i=1

(
zfi − zf

)(
zfi − zf

)T

where Pf is the sample covariance of the forecast ensemble and ηi ∼ N (0,R)181

for the perturbed observation formulation of the EnKF (Evensen, 2003). This step182

takes place entirely at time tk, and thus the time dependence has been dropped. The183
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forecast-analysis cycle is then repeated for each available consecutive observation184

time.185

Here, the scalar Manning’s n in the Katama Inlet area (green region in Figure 2)186

is estimated using drifter trajectories located throughout the bay. Thus, only n and187

the drifter positions are updated at each analysis step; in the forecast step, the full188

velocity and elevation fields of the entire domain evolve according to ADCIRC with189

the latest updated value of n in Katama Inlet.190

3.2. Observing system simulation experiments191

The method is tested in an artificial scenario known as an observing system sim-192

ulation experiment (OSSE), in which the same model used in the forecast step of the193

assimilation method also is used to create a synthetic truth consisting of time series194

of both the velocity field and the drifter positions. Random (Gaussian) perturbations195

are then added to the true drifter trajectories to simulate noisy observations. An196

initial ensemble of the flow and drifters is generated by perturbing the true initial197

value of Manning’s n in Katama Inlet and the true drifter positions. This yields an198

ensemble of different flow states, each consistent with a perturbed value of n, and199

each with different initial drifter positions. The performance of the data assimilation200

method is then judged based on its ability to recover the true value of n in the inlet201

from the perturbed initial ensemble and the noisy observations.202

Two OSSEs are run. One assimilates drifter trajectories from Katama Inlet (thick203

white curves in Figure 4), and the other assimilates trajectories from Edgartown204

Channel, located north of the inlet subdomain (thin white curves in Figure 4). The205

drifter release times and locations are designed to mimic the real data available206

from August 2013. In both experiments, the synthetic truth is a 6-hour time series207

of the velocity field generated with Manning’s n = 0.035 s/m1/3 in the inlet and208
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the trajectories from 13 drifters. The initial ensemble of drag coefficients {ni} for209

i = 1...Ne = 30 is drawn from a normal distribution with mean 0.025 s/m1/3 and210

standard deviation 0.005 s/m1/3. This is a common ensemble size for this size problem211

(Houtekamer and Mitchell, 2001; Mitchell et al., 2002; Evensen, 2003). Decreasing212

the ensemble size to Ne = 10 degrades the performance, but Ne = 20 yields similar213

results as Ne = 30. In practice, some a priori knowledge of the feasible range of214

values is necessary in order to choose the initial ensemble mean and spread. For215

the synthetic experiments here, the initial ensemble is defined relatively far from the216

truth (the mean is two standard deviations less than the true value of n) to determine217

whether the assimilation can recover the truth even under these conditions.218

The observation error of the drifters has mean 0 and standard deviation σR =219

25m. This is larger than the value of approximately 2m given by MacMahan et al.220

(2009) as the error of the real drifter positions, to prevent the assimilation ensemble221

from collapsing onto the observations too quickly and resulting in filter divergence.222

Here, “filter divergence” refers to the collapse of the ensemble onto the incorrect223

estimate of n, but it could also result in an estimate of the uncertainty surrounding224

n that is not large enough (due to an ensemble spread that is too small). Filter225

divergence is often a result of applying an approximately linear method (that is, the226

EnKF) to a nonlinear problem (such as drifter trajectories in a nonlinear flow) and227

has been demonstrated in the Lagrangian data assimilation setup (Apte et al., 2008;228

Slivinski et al., 2015). In a system that has only weakly nonlinear characteristics,229

the EnKF can avoid divergence if larger errors are included (Mitchell et al., 2002).230

Although overestimating observation error can potentially have detrimental effects,231

such as increasing the time it takes for the ensemble estimate to converge and pro-232

viding an artificial lower bound on the errors in the estimates, the results in the233

following section suggest that the assimilation worked well with the chosen values:234
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Figure 4: Synthetic drifter trajectories in Katama Bay. Thin white trajectories are from the drifters

released on model date Aug 20 in Edgartown Channel, and thick white trajectories are from drifters

released on model date Aug 22 just outside Katama Inlet.

the ensemble does not collapse too early nor does it diverge. The time between sub-235

sequent observations Δt is tested for Δt = 1, 5, and 10 min. The velocity fields for236

both the synthetic truth and the initial ensemble are spun up with their respective237

values of n for several days, so that all the simulations have reached equilibrium238

before assimilation begins.239

4. Results from synthetic experiments240

4.1. Drifters within the subdomain of interest241

OSSEs are run with drifters released just outside Katama Inlet when the flow242

is from south to north into the inlet, through the bay, and out through Edgartown243

Channel to Vineyard Sound. The drifter deployment times and locations are chosen244
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to mimic the real observations, so ND = 13 synthetic drifters are released (in the245

numerical model) just outside the inlet starting at 8:30 am (EDT) Aug 22, 2013. To246

study the convergence of the estimates of n, the data are assimilated over a period of247

6 hours, significantly longer than the 1-2 hour-long time windows of the real drifter248

observations.249

For each of the Δt, the assimilation estimates n fairly well, converging after about250

60 minutes (Figure 5). However, for Δt = 10 min, the assimilation initially over-251

estimates n slightly, and gradually decreases to the truth over the six hour window252

(Figure 5C).253

The estimates of kinetic energy, defined as 0.5 times the sum of squared velocity254

over all grid points i: 1
2

∑
i(u

2
i + v2i ) for the three data assimilation experiments, also255

converge within 60 min to the synthetic true values (Figure 6 (A-C)). A “free run”, in256

which the initial ensemble members are each integrated forward without assimilation257

for 6 hours with the initial value of n remaining constant, has poorer performance258

than the assimilation runs (compare Figure 6D with A-C). These results demonstrate259

that changing the friction (via assimilation) on these time scales has near-immediate260

effects on the total kinetic energy in the model, and thus, the assimilated ensemble261

predicts the correct kinetic energy as quickly as it estimates the correct value of the262

drag coefficient.263

4.2. Drifters in Edgartown Channel264

Three additional experiments are run with the same setup as above, but with the265

drifters released in Edgartown Channel. Again, the deployment time (10:40 am Aug266

20, 2013) and initial locations of the 13 drifters are chosen to match the real data, and267

observations are assimilated for six hours for Δt = 1, 5, and 10 min. Although the268

drifters never approach the inlet subdomain in which the drag coefficient is estimated,269
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Figure 5: Ensemble (thin light red curves) and mean (thick red curves) estimates for Manning’s n

versus assimilation time on Aug 22, when drifters were released in Katama Inlet, for Δt= (A) 1,

(B) 5, and (C) 10 min. The black line is n = 0.035 s/m
1/3

.
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Figure 6: Ensemble (thin light red curves) and mean (thick red curves) estimates of kinetic energy

versus assimilation time on Aug 22, when drifters were released in Katama Inlet, for Δt= (A) 1,

(B) 5, and (C) 10 min, as well as the case with no data assimilation (D). The black curves are the

synthetic “truth” from the simulation with n = 0.035 s/m
1/3

.
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the assimilation converges to the correct “true” value of n (Figure 7). However,270

assimilating drifters in Edgartown Channel results in a longer time to convergence271

than assimilating drifters in the inlet. For Δt = 1 min, the ensemble takes about272

90 minutes to converge onto the truth (Figure 7A), and for Δt = 10 min, it takes273

about 2 hours (Figure 7C). For Δt = 5 min, the ensemble initially diverges from the274

truth, and takes approximately 6 hrs to converge (Figure 7B). This is likely due to275

a combination of nonlinearity and random noise that has a stronger effect on the276

assimilation when the observations are farther away from the region of interest, and277

is discussed below in more detail. Similar to the releases in Katama Inlet (Figure 6),278

assimilation estimates of the kinetic energy converge to the true values at the same279

rate as n converges (Figure 8).280

4.3. Discussion281

As expected, the assimilation of drifters in the same spatial location (Katama282

Inlet) as the estimated n leads to quicker convergence to the true n than the as-283

similation of drifters in Edgartown Channel. This is consistent with the results of284

Salman et al. (2008), who showed that local structures within a flow field are well-285

approximated when the drifters stay close to those structures (eg, when the drifters286

are trapped in a vortex), whereas global flow properties are estimated best when the287

drifters cover most of the domain (eg, when the drifters are spread out and some288

follow a jet stream in the flow). Therefore, the performance of the Lagrangian data289

assimilation algorithm will depend on the spatial location of the drifters and their290

trajectories.291

Although the performance degrades slightly when the time between observations292

of drifters in Katama Inlet is increased, the assimilation estimates the correct value293

of n within about an hour for each Δt. Conversely, when drifters in Edgartown294

18



Figure 7: Ensemble (thin light red curves) and mean (thick red curves) estimates of Manning’s n

versus assimilation time on Aug 20, when drifters were released in Edgartown Channel, for Δt=

(A) 1, (B) 5, and (C) 10 min. The black line is n = 0.035 s/m
1/3

.
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Figure 8: Ensemble (thin light red curves) and mean (thick red curves) estimates of kinetic energy

versus assimilation time on Aug 20, when drifters were released in Edgartown Channel, for Δt=

(A) 1, (B) 5, and (C) 10 min, as well as the case with no data assimilation (D). The black curves

are the synthetic “truth” from the simulation with n = 0.035 s/m
1/3

.
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Channel are assimilated, the performance of the assimilation depends more strongly295

on the time between observations, and does not improve monotonically as the time296

between observations decreases.297

To determine why assimilating trajectories from Katama Inlet results in signif-298

icantly faster convergence than assimilating Edgartown Channel trajectories, espe-299

cially for intermediate Δt = 5 min, consider the time it takes the kinetic energy in300

the bay to adjust and equalize after an abrupt change in the drag coefficient in the301

inlet. A crude approximation of the adjustment time is the time required for a long302

gravity wave to propagate over the largest dimension of the bay lmax in water depth303

d, and for a reflected wave to return to the source over the same path:304

Tadjustment ≈ 2

(
lmax√
gd

)
(4)

≈ 2

(
2× 103m

(9.8 ∗ 4)1/2m/s

)

≈ 600s.

Thus, the intrinsic time for Katama Bay to adjust to changes in n in the inlet is305

approximately 10 min.306

To determine how long it takes the velocity field and the drifters to adjust to307

the new value of Manning’s n, the system was run for 4 days with n = 0.035 s/m1/3
308

in the inlet and constant north-to-south tidal forcing, similar to the case when the309

drifters are released in Edgartown Channel. At the beginning of the fifth day, simu-310

lations with n = 0.01, 0.02, 0.03, 0.035, 0.04, 0.05, and 0.06 s/m1/3 were run. In each311

experiment, drifters are released in Edgartown Channel at the same locations as the312

synthetic experiment above. Each situation is simulated for 1 hr, with no assimila-313

tion.314
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Figure 9: Kinetic energy spatially averaged over the entire domain versus time for different initial

values of n (colors in the legend; units s/m
1/3

) in the inlet.

Figure 10: Average speed of 13 drifters released in Edgartown Channel versus time for different

initial values of n (colors in the legend) in the inlet.
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For a range of initial values of n, the kinetic energy averaged over the entire315

domain converges about 25 minutes after n is changed, although for the simulations316

with the largest and smallest values of n, the kinetic energy oscillates slowly (Fig-317

ure 9). A change of 0.005 s/m1/3 in n from the true values results in convergence318

after about 10 min. Changing n by 0.025 s/m1/3 results in about a 50% change in319

kinetic energy (e.g., compare the blue (n = 0.010) with the purple (n = 0.035) curve320

and compare the purple (n = 0.035) with the red (n = 0.060) curve in Figure 9).321

For the first 10 min after the change, the average speed of the drifters released in322

Edgartown Channel does not depend on the initial value of n (Figure 10). The model323

simulates drifter advection with a 4th order Runge-Kutta scheme with a 1-min time324

step, and the simulations suggest that changes in the friction in Katama Inlet do not325

have an effect on the drifters in Edgartown Channel for at least 10 min, consistent326

with Eq. 4.327

It is unsurprising, then, that the assimilation takes longer to converge when328

the drifter observations are located in the channel than when they are in the inlet:329

information takes longer to travel between Katama Inlet and Edgartown Channel330

than it does within the inlet. Due to the nature of the data assimilation method,331

which combines uncertain forecasts with the noisy observations, the increment made332

to n at each analysis step is generally no more than 0.005 s/m1/3. In this regime,333

there is very little effect on the average drifter speed before fifteen minutes, so the334

assimilated drifter trajectories will likely not reflect the changes in n within one335

assimilation step of any size studied here. Therefore, small differences in realizations336

of noise (in the drifter observations) could affect the timescale of convergence of n337

fairly strongly when the drifters are in the channel.338

To this end, experiments identical to the ones earlier in this section are run (results339

not shown), but with different realizations of observation noise, sampled from the340
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same Gaussian distribution as the previous experiment. The second experiment with341

drifters in Katama Inlet performs almost identically to the inlet experiment shown342

above: the ensemble has converged onto the true value within an hour, with the343

best performance for Δt = 1 minute. However, the experiment that assimilates344

drifters in Edgartown Channel produces fairly different results from the experiment345

above. For Δt = 1 min and Δt = 5 min, the ensembles each take about 4 hours to346

converge, more than twice the time for the experiment with Δt = 1 min above, but347

significantly less time than the experiment with Δt = 5 min above. The experiment348

with Δt = 10 min results in about a 2.5 hour convergence time for the second349

realization of noise, as compared to the convergence time of 90 min for the original350

experiment in Section 4.2 (see Figure 7.) This suggests that the performance of the351

Edgartown Channel experiments depends strongly on the realizations of observation352

noise. Ultimately, these results are likely due to subtle interactions between the353

effects described here; this is typical in data assimilation experiments with nonlinear354

systems, which often arise in Lagrangian data assimilation.355

5. Results from a field experiment356

5.1. Setup357

The trajectories of surface drifters released in Katama Inlet on Aug 22 (Inlet358

Trajectories in Figure 3) and in Edgartown Channel Aug 20 (Channel Trajectories in359

Figure 3) are assimilated to estimate the friction in Katama Inlet. Prior to reviewing360

the results of the assimilation, the performance of the model is tested with the361

original value n = 0.035 s/m1/3. The simulated kinetic energy from that experiment362

in the inlet is compared with the kinetic energy observed at 10 locations in the363

system (Figure 11). The model kinetic energy at each sensor location is calculated364
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Figure 11: Observed (solid black curves) and simulated (dashed blue curves, n = 0.035) kinetic

energy versus time for 3 days in 2013. The shaded boxes are times during which drifters were

deployed. The location of each comparison is given by the mooring number at the top of each

panel, which corresponds to a sensor on the map in Figure 3. Note differences in scales of y-axes.

by interpolating the simulated velocity between nearby grid points. The observed365

kinetic energy is calculated from currents measured about 0.8 m above the seafloor366

in water depths < 2 m and from a depth average of the nearly uniform-in-the-vertical367

profiles in depths > 2 m (Orescanin et al., 2014).368

The largest discrepancies between simulations with n = 0.035 and observations369

are at locations 05 and 46, both close to Katama Inlet (Figure 3). The value370

n = 0.035 s/m1/3 was based on observations in 2011, but the inlet lengthened, nar-371

rowed, and shoaled by 2013, resulting in a significant change in n (Orescanin et al.,372

2016). Instead of re-tuning n with the 2013 in-situ observations, n is estimated by373

assimilating drifter trajectories into the model.374
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Two experiments are performed – the first assimilates drifter observations in375

Katama Inlet, and the second assimilates drifter observations in Edgartown Channel.376

The model ensemble is initialized with a mean of n = 0.035 s/m1/3 and a standard377

deviation of 0.005 s/m1/3. The observation error is set at σR = 25m, as in the378

synthetic experiments.379

Drifter data are available every second, but results from the synthetic runs (Sec-380

tion 4) suggest that this is more frequent than necessary since assimilating data every381

1 min was sufficient for successful estimation in those experiments. Additionally, the382

EnKF assumes that observation errors are uncorrelated in time; if drifter positions383

are sampled every 1 sec, it is not clear that this assumption will hold. Thus, Δt = 1.0384

min for the channel drifter data on Aug 20, and Δt = 0.5 min for the inlet drifter385

data on Aug 22 due to the shorter trajectories (Figure 3). Synthetic experiments386

with Δt = 0.5 min for the inlet drifters (not shown) demonstrate very similar results387

to those with Δt = 1.0 min.388

On Aug 20, ten drifters were deployed in the channel at 10:50 am and recovered389

at 1:10 pm. On Aug 22, the drifters were deployed in several relatively short releases390

in the inlet. Twelve drifters are assimilated from 8:31 until 8:48 am (Assimilation391

Round 1), at which point each ensemble member is evolved forward until 9:12 am392

with the final estimate of friction from Round 1. At 9:12 am, the next wave of393

ten drifters are assimilated for 10 minutes (Round 2). In Round 3, nine drifters are394

assimilated from 9:42 until 9:47am, and in Round 4, nine drifters are assimilated from395

9:59 until 10:20 am. Note that the number of drifters assimilated in each round is not396

constant, because not every drifter was released at the exact same time nor did they397

all provide meaningful trajectories. Thus, only drifters that provided trajectories398

during overlapping time windows are assimilated.399

26



08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00

time

0.025

0.03

0.035

0.04

0.045

0.05

M
an

ni
ng

s 
n 

(s
/m

1/
3
)

Analysis ensemble (real drifters), Aug 22 (inlet)

assim window
ensemble
mean
initial estimate

Figure 12: Ensemble (thin light red curves) and mean (thick red curves) estimates of Manning’s

n from assimilating drifters within Katama Inlet versus time, with the initial estimate of n =

0.035 s/m
1/3

(black horizontal line, the value found for the 2011 data (Orescanin et al., 2016)).

Blue shaded regions are assimilation windows and unshaded regions are time periods in which the

ensemble estimates of n were kept constant.

5.2. Results and discussion400

Manning’s n estimated by assimilating the Inlet Trajectories converges to n =401

0.045 s/m1/3 (Figure 12), higher than the 2011 estimated value of 0.035 s/m1/3 (Ores-402

canin et al., 2016). Without assimilation and with n = 0.035, the model over-predicts403

the kinetic energy at almost every in-situ sensor location (Figure 13). By assimilat-404

ing drifter data, the model is closer to the in-situ observations at most locations,405

especially at sensors 05 and 47, located close to Katama Inlet (Figure 3). Specifi-406

cally, since the observed drifters are traveling more slowly than the simulated drifters407

within the assimilation, the EnKF analysis increases the drag coefficient to diminish408

the mismatch between the observed drifters and the simulated drifters.409

Figures 12 and 13 show how the estimate of n and the associated kinetic energy410

change during assimilation, as n is updated. In addition, another simulation is411

restarted on Aug 20 and run for three full days with the final estimated value of412
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Figure 13: Kinetic energy versus time for observations (black curves), the model with no assimilation

and n = 0.035 s/m
1/3

(dashed blue curves), and ensemble (thin light red curves) and mean (thick

red curve) estimates of n from assimilating drifters within Katama Inlet on Aug 22 versus time at

each sensor location (numbers on top of each panel refer to sensor locations in the map in Figure 10).
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n = 0.045 s/m1/3. Model skill is quantified by the root mean square error (RMSE,413

averaged over Aug 20-22) in kinetic energy relative to that observed with the in-situ414

sensors. At each sensor location, the observed kinetic energy at time t is calculated as415

KEobs(t) = 1/2 (uobs(t)
2 + vobs(t)

2) for uobs, vobs observed latitudinal and meridional416

current velocities, respectively. Similarly, the modeled kinetic energy KEsim(t) =417

1/2 (usim(t)
2 + vsim(t)

2) is calculated by interpolating the simulated velocity to the418

sensor locations. The RMSE is defined as419

RMSE =

(∑tf
t=t0 (KEobs(t)−KEsim(t))

2∑tf
t=t0 (KEobs(t))

2

)1/2

(5)

over the time period from t0 to tf . Relative to the simulation with n = 0.035 s/m1/3,420

the simulation with the assimilated parameter n = 0.045 s/m1/3 yields improved421

kinetic energy estimates at nearly every mooring, with the most significant improve-422

ment at Mooring 05, in Katama Inlet (Table 1).423

In contrast, the estimate of n in Katama Inlet from assimilating drifter trajec-424

tories in Edgartown Channel does not converge, and at the end of the time window425

n = 0.018 s/m1/3 (Figure 14), significantly lower than the value estimated by assim-426

ilating drifters in the inlet, and lower than the initial estimate of n = 0.035 s/m1/3.427

Unlike at the time of the Katama Inlet drifters’ release, at the time of the drifters’428

release in Edgartown Channel the model simulation underestimates the observed ki-429

netic energy at 7 of the 10 in-situ sensors (Figure 15). In particular, the original430

model underestimates the kinetic energy at sensors 03, 04, and 41 in Edgartown431

Channel (see Figure 3 for locations), where the drifters were released, although the432

kinetic energy at sensor 42 (also near the channel) is overestimated. The assimilation433

seeks to diminish this initial mismatch between the observed and simulated drifter434

trajectories by increasing the kinetic energy via decreasing the drag coefficient. As a435
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Sensor n = 0.035 n = 0.018 n = 0.045

03 0.007 0.013 0.007

04 0.006 0.012 0.005

05 0.371 0.888 0.234

41 0.003 0.003 0.004

42 0.005 0.013 0.004

43 0.014 0.042 0.007

44 0.007 0.014 0.006

45 0.035 0.105 0.025

46 0.100 0.096 0.095

47 0.067 0.179 0.045

Table 1: Normalized root mean squared error of kinetic energy between model simulations with

given n (units s/m
1/3

) and the in-situ observations between Aug 20 and 22.

result, towards the end of the assimilation period, both the original simulation with436

n = 0.035 s/m1/3 and the assimilated simulations overestimate the observed kinetic437

energy (Figure 15).438

The model run with the final value of n = 0.018 s/m1/3 has higher RMSE relative439

to the observed kinetic energy than the model using n estimated by assimilating440

drifters in the inlet (Table 1), with the biggest errors at sensor 05 in the inlet. To441

test if the initial discrepancy in kinetic energy is indeed a driving factor in the results442

of the assimilation, channel drifters are assimilated beginning at 12:00 pm (rather443

than at 10:50 am), when the model changes from underestimating the observed444

kinetic energy to either overestimating or accurately estimating the observed energy445

(Figure 15). The model is initialized with n = 0.035 s/m1/3, and run over the window446
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Figure 14: Ensemble (thin light red curves) and mean (thick red curve) estimates of Manning’s n

in Katama Inlet from assimilating drifters in Edgartown Channel on Aug 20 as a function of time.

The black line is the initial estimate n = 0.035 s/m
1/3

.

from 12:00 to 1:10 pm (Figure 16).447

In this case, the estimate of n oscillates and decreases initially, and after 1 hr448

returns to the initial value of n = 0.035 s/m1/3 (although the ensemble may not449

have converged; Figure 16). This is because the model is not consistently over- or450

under-estimating the observed kinetic energy at the start of the window, and thus451

the assimilated ensemble does not increase or decrease the estimate of n by the end452

of the assimilation.453

These results suggest that the assimilation outcome can depend on the time and454

location of drifter deployment. Because the parameter of interest is the friction in a455

specific part of the domain (Katama Inlet), when drifters are deployed near or in that456

region, the assimilation performs better. For the experiments with drifters deployed457

in Edgartown Channel, the results depend on when the assimilation begins. This458

is linked to whether the model over- or under-estimates the kinetic energy at the459

beginning of the assimilation window. Further experiments would help determine460
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Figure 15: Kinetic energy versus time for observations (black curves), the model with no assimilation

and n = 0.035 s/m
1/3

(dashed blue curves), and ensemble (thin light red curves) and mean (thick

red curve) estimates of n in the inlet from assimilating drifters within Edgartown Channel on Aug

20 versus time at each sensor location (numbers on top of each panel refer to sensor locations in

the map in Figure 3).
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Figure 16: Ensemble (thin light red curves) and mean (thick red curve) estimates of Manning’s n

in Katama Inlet from assimilating drifters in Edgartown Channel beginning at 12:00 pm on Aug

20 versus time. The black line is the initial estimate n = 0.035 s/m
1/3

.

the relative importance of drifter deployment location and the difference in observed461

and simulated kinetic energy at the beginning of the assimilation window.462

Note that these experiments do not include any covariance localization, a com-463

mon method for reducing artificial correlations between spatially-distant regions of464

the domain, since the parameter of interest covers an entire subregion that may or465

may not include the drifter trajectories. Thus, these results demonstrate how the466

assimilation behaves when drifter observations in Edgartown Channel are allowed467

to update n in Katama Inlet without any constraints. Imposing localization in the468

Edgartown Channel experiments would likely slow the time to convergence without469

changing the overall behavior of the ensemble estimate of n.470

6. Conclusions471

Trajectories of drifters are assimilated into a numerical model (ADCIRC) to esti-472

mate the friction (Manning’s n) in Katama Inlet, which affects circulation in tidally-473
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dominated Katama Bay. Synthetic observation experiments demonstrate the ability474

of the assimilation method to estimate Manning’s n using only trajectories of passive475

Lagrangian drifters. The performance of the assimilation is greatest when the drifters476

are located near the region for which n is estimated. When the synthetic drifters477

are located in a different region (Edgartown Channel), away from the Katama Inlet478

region for which n is estimated, the assimilation performance decreases, likely owing479

to interactions between the intrinsic adjustment time of the bay, sensitivity to ob-480

servational noise, and nonlinear effects within the data assimilation method. This is481

supported by the investigations with identical setups but different realizations of ob-482

servational noise (Section 4.3): the two realizations of the Katama Inlet experiment483

were qualitatively indistinguishable, while the two Edgartown Channel experiments484

differed significantly.485

There are larger differences in the outcomes when real drifter data are assimi-486

lated, depending on whether drifters from Katama Inlet or Edgartown Channel are487

assimilated. Assimilation of trajectories observed from drifters released near Katama488

Inlet converges to a larger inlet drag coefficient than the 2011 value. Throughout489

the system, the corresponding simulated kinetic energy with the assimilated n is490

often closer to the observed kinetic energy than simulations with the 2011 value. In491

contrast, when trajectories observed from drifters released in Edgartown Channel in492

2013 are assimilated, n is reduced and the kinetic energy estimates are not as accu-493

rate. This is partially due to the mismatch between the simulated (initialized with494

the 2011 value of n) and observed kinetic energy at the beginning of the assimilation495

window, and partially due to the larger spatial distance between the observations496

and the region for which n is estimated. These results are also sensitive to the time497

the drifters are released in the channel.498

Differences in assimilation performance between the synthetic and real experi-499
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ments are likely due to unmodeled processes in the real experiment that may have500

a larger effect on the assimilation when the observations are far from the region of501

interest, owing to higher sensitivity to noise. Thus, an OSSE’s ability to provide502

guidance decreases with increasing distance between observations and the region of503

interest.504

The initial numerical circulation model used bathymetry measured in 2013 and a505

parameter tuned for kinetic energy measurements in 2011. The Katama Bay domain506

changed significantly in the area of Katama Inlet between 2011 and 2013 (recall507

Figures 1B and C), and the goal was to improve the parameter estimate n from508

2011 to represent the 2013 situation. Results depend on both when and where509

drifters are observed: if one wishes to estimate a local parameter in a model, then510

it is best to deploy drifters in that region. Ultimately, assimilation of real drifter511

trajectory data in Katama Inlet provides an improved estimate of n in the inlet,512

based on comparisons between observed kinetic energy in 2013 and kinetic energy513

from the model simulations with the 2011 and 2013 estimates of the parameter.514

While Eulerian data are used to judge the performance of the assimilation, they are515

not necessary for the actual computation of the parameter.516
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